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SUMMARY 

The stability of two different mixed finite element methods for incompressible flow problems are 
theoretically analysed. The effect of the stability of the mixed approximation on the accuracy and the rate of 
convergence of solution is assessed for two non-trivial problems. The numerical results presented indicate that 
if the stability of the mixed approximation is not guaranteed then both pressure and velocity solutions are 
markedly less accurate. In one of the cases considered the ultimate convergence of both the pressure and the 
velocity solutions is seriously in doubt. 
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INTRODUCTION 

It is a well established fact that in order to be certain of success when solving incompressible flow 
problems using primitive variable formulations, the component mixed finite element approxim- 
ations of velocity and pressure must be compatible. Theoretically, if a stability inequality of the 
form introduced by Babiiska,’ or Brezzi2 is satisfied then the compatibility of the mixed 
approximation is guaranteed. A number of popular mixed FE methods for incompressible flow 
problems can be proved to give stable mixed approximations for all possible element subdivisions; 
several such methods are reviewed by Thomsset3 and F ~ r t i n . ~  

A variety of elements for solving incompressible flow problems which are not stable in the 
classical sense are also in common use; for example, mixed and penalty finite element methods 
which exhibit spurious pressure modes are discussed by Sani et al.,’ Engelman et aL6 and Oden and 
Jacquotte.’ Although error estimates and convergence proofs for regular grids of rectangular 
elements have been established, e.g. by Johnson and Pitkaranta’ and by Malkus and O l ~ e n , ~  the 
numerical results in References 5-7 indicate that these methods can be significantly less accurate 
than methods with guaranteed stability, particularly in the presence of ‘impure’ pressure modes. 

In this paper the effect of the stability of the mixed approximation on the accuracy and rate of 
convergence of solution is assessed. In the first part of the paper, two simple triangular elements are 
analysed from the point of view of stability. One of the elements is shown to give stable mixed 
approximations for any element subdivision; the other is shown to be semi-stable in the sense that 
for a grid of rectangles all subdivided into two triangles the stability of the resulting mixed 
approximation depends on the triangulation strategy that is used in generating the grid. 
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In the second part of the paper, numerical results for these two elements are presented. The results 
illustrate that if the stability of the mixed approximation is guaranteed then optimal convergence 
rates of both the pressure and the velocity solutions can be measured. However, if stability is not 
guaranteed then the resulting solutions are not only significantly less accurate, the ultimate 
convergence of the pressure and the velocity can both be in doubt. 

The primary intention of the paper is to illustrate the dangers that exist if flow problems of 
engineering importance are solved using elements which do not have stability guaranteed. 

STABILITY THEORY 

The general theory of the stability of mixed finite element methods is relevant to a number of 
incompressible flow formulations. The simplest formulation is the stationary Stokes equations in 
(two-dimensional) Cartesian co-ordinates 

1 
- Vp +-V2u = 0, 

Re 
inR, 

divu= 0, inR, (1) 

with appropriate conditions on the boundary 8R of the domain R. The classical weak formulation 
of the above problem is as follows: given appropriate velocity and pressure spaces V and Q, 
respectively, find (u, p ) ~  V x Q such that 

1 
-(Vu, Vv) - (div v, p )  = 0, 
Re 

(div u, q) = 0, (2) 
for all V E V  and qeQ, where (.,.) is the usual inner product 

a n  

(u, v) = J J u,u, + uy vy dxdy. 
R 

(3) 

The weak formulation can be discretized by introducing finite dimensional subspaces V h  and Qh, to 
give the corresponding approximate problem: find (uh, ph)e V h  x Qh such that 

I 
-(Vuh, Vvh) - (div vh, p h )  = 0, 
Re 

(div uh, qh) = 0, (4) 
for all vheVh and qheQh. 

In a finite element framework the spaces Vh and Qh are characterized by the element subdivision 
T,, and the polynomial approximations within the element. Three standard types of element 
approximation are of interest in this paper: 

Q,: the quadratic polynomial defined by the three vertex node values and the three mid-side 
node values 

L,: the linear polynomial defined by the three vertex node values 
L,: the linear polynomial defined by the three mid-side node values. 

It is assumed at the outset that the triangulation T ,  is regular in the sense that the ratio of the 
diameters of the escribed and inscribed circles is bounded both above and below by constants 
which are independent of h, for every element in the triangulation. Applying the general theory of 
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mixed finite element methods, the stability of the mixed approximation V h  x Qh is guaranteed if a 
Babuska-Brezzi type condition is satisfied, i.e. if a strictly positive constant c and be found such 
that 

(div vh, qh) 
SUP 
vh+0 

B c II qh II 
v%Vh II vh II 

for some norms compatible with Vh and Qh, and for all qhgQh. If it can be shown that (5) is satisfied 
for some particular velocity/pressure polynomial approximation independently of the triangul- 
ation Th then the element is said to be uniformly stable. Uniformly stable elements can always be 
used with confidence, for example in the knowledge that spurious pressure modes are not possible 
on any grid. Several such elements have been identified, for example by Crouzeix and Raviart," 
but the most relevant example here corresponds to the mixed approximation 

V h =  { ( D : , u ! ) : u : I A ~ =  QE,~;IAk= Q,  for all A k E T h } ,  

Qh={qh:qhlAk=Lc for all A k E T h } ,  

i.e. continuous quadratic approximation of the two components of velocity, with continuous linear 
approximation of the pressure over the same grid of triangular elements. The uniform stability of 
this element has been established by Bercovier and Pironneau." 

If the velocity/pressure polynomial approximation within an element is such that the element 
can exhibit spurious pressure modes then the element clearly cannot be uniformly stable. However, 
it is still possible to guarantee the stability of certain mixed approximations using such elements, 
for example by ensuring that the subdivision Th satisfies additional geometric constraints. The key 
to establishing stability in these cases is to use local stability theory, a technique suggested by 
Stenberg.12 The heart of the stability theory developed in Reference 12 is the so called 
'macroelement condition'; here, any patch of elements which satisfies this fundamental condition is 
said to be locally stable. 

Assuming that quadratic approximation is used for all components of velocity, a simple way of 
interpreting the macroelement condition is to consider an arbitrary velocity field with boundary 
data specified everywhere on the boundary of the patch; local stability then requires that the 
pressure field over the patch must be free of all spurious pressure modes. Expressed mathemati- 
cally, if there are n velocity nodes strictly inside the patch, and a total of m pressure nodes inside and 
on the boundary of the patch, so that the local approximations are of the form 

n 

2.4: = 1 u:N'(x,y), 
i = l  

u; = ,x u p q x , y ) ,  
r = 1  

(7) 

where N'(x, y) and Mj(x ,  y) are the usual Lagrangian basis functions, then there exists a (2n x rn) 
patch pressure matrix C' which can be written in the form 
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where R' is the total area of the patch. The local stability condition can then by formally stated as 
follows. 

Definition 

A patch of elements is said to be locally stable if the patch pressure matrix has a rank of rn - 1. 

In simple terms, the eigenvector corresponding to the only null singular value must be the 
constant vector, i.e. if C' p l  = 0 then pl is constant. 

The importance of being able to construct simple patches of elements which are locally stable is 
the fact that any grid which can be generated by grouping together stable patches will give an 
overall mixed approximation which is guaranteed to be stable is the sense that (5) is satisfied, with 
the constant c independent of h. This result is formally proved in Reference 12. 

To illustrate the applicability of local stability theory, two simple elements are analysed. The first 
example considered is the uniformly stable element which was introduced above; the second 
example is a non-uniformly stable element which will be shown to have interesting local stability 
properties. 

Example 1 

Consider the general mixed approximation 

I /h  = { (ot, 0:): 0: Illk = Q,, 0: 
Qh = {qh:qhlak = L, for all A k E T h } .  

= Q, for all A k E  Th}, 

consider first an arbitrary patch of two elements as illustrated in Figure 1. The patch pressure 
matrix in this case is 

(12) 
1 

&q - yr) i ( ~ s  - ~ p )  i ( ~ p  - ~ s )  g ( ~ r  - Yq) 
-xq) i(xp-xs) i(xs-xp) i(xq-xr) 

Figure 1. Degree of freedom for velocity (0); degree of freedom for pressure (0) 
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Assuming that nodes do not coincide, the matrix equation C1 p1 = 0 implies that p z  = p 3  and 
p1 = p4. In simple terms, the two pressures on the inter-element edge are equal, and the two 
pressures off the inter-element edge are equal. Obviously, two-element patches cannot be locally 
stable since there are four pressures and the rank of the patch pressure matrix is at most two. 

Consider now arbitrary patches of three elements. There are two possibilities, which are 
illustrated in Figure 2. In either case, it is evident that the internal node conditions, that the 
pressures on inter-element edges are equal and the pressures off inter-element edges are equal, must 
imply that all the pressures over the patch are equal, i.e. C' pl = 0 implies that p1 is constant, so all 
patches of three elements must be locally stable. 

Considering larger patches, it can be proved by induction using the three-element patch that any 
patch consisting of more than three elements must also be locally stable. Finally, since all possible 
grids with more than two elements can always be decomposed into stable patches consisting of at 
most five elements, (5) is satisfied for any regular subdivision, so the element is uniformly stable. 

Example 2 

Consider the general approximation 

V h =  {(u~,u:,):uS:IA~=Qc,~:,IA*=Qc for all AkETh} ,  

Qh = { q h : q h l A k  = L, for all A,€Th}, 

i.e. continuous quadratic approximation of the two components of velocity with discontinuous 
linear approximation of the pressure corresponding to the three mid-side nodes. Although it has 
been pointed out previously, for example by Grifiths,13 that this element can exhibit two spurious 
pressure modes, its stability properties do not appear to have been analysed before. Consider first 
the arbitrary patch of two elements as illustrated in Figure 3. The patch pressure matrix in this case 
is 

1 i ( ~ q  - ~ p )  3 ( ~ p  - Y r )  0 4 ( ~ s  - Yq) 3 (Yr  - ~ s )  

i(xp - xq) f(xr - xp) 0 Axq - xs) i(xs - xr) 1 C ' = [  

Clearly, the two-element patch cannot be locally stable since there are a total of five pressures and 
the rank of the patch pressure matrix is at most two. Also evident from the structure of the patch 
pressure matrix is the origin of the spurious chequerboard pressure modes, namely the zero 
coefficients corresponding to the pressure on the inter-element edge. 

The propagation of the spurious pressure modes can be demonstrated by extending the two- 

Figure 2. Degree of freedom for velocity (0); degree of freedom for pressure (0) 
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element patch to the three-element patch illustrated in Figure 4. The resulting pressure matrix will 
have two extra columns since there are two additional pressures, and two extra rows corresponding 
to the single additional internal node; thus the rank deficiency of the patch pressure matrix is still at  
least three. Using the same argument, it can be deduced that a locally stable patch can never be 
formed by appending an additional element to one of the edges of a smaller patch which is not 
locally stable. This is a fundamental difference between this element and the uniformly stable 
element in example 1. 

The only way of generating locally stable patches from unstable patches in this case is to 
introduce additional elements which adjoin two edges of the original patch, so as to increase the 
number of rows in the patch pressure matrix without a similar increase in the number of columns. A 
simple example of a patch of elements which is locally stable is the patch of three isosceles triangles 
which is illustrated in Figure 5. The local stability can be established in this case by calculating the 
singular value decomposition of the corresponding patch pressure matrix. 

Figure 3. Degree of freedom for velocity (0); degree of freedom for pressure (0) 

T 

Figure 4. Degree of freedom for velocity (0);  degree of freedom for pressure (0) 

Figure 5. Degree of freedom for velocity (0); degree of freedom for pressure (0) 
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The intrinsic sensitivity of the element is perhaps best illustrated by studying the two patches of 
elements which are illustrated in Figures 6 and 7. Calculating the corresponding patch pressure 
matrices it is easily verified that the eight-element patch with the union-jack triangulation is locally 
stable, but that the patch with the unidirectional triangulation is not. In the unidirectional case the 
patch pressure matrix has a rank deficiency of three and the patch clearly exhibits the two spurious 
chequerboard pressure modes. This local stability behaviour has critical implications for the 
stability of mixed approximations in general, and in particular for the common case of a 
rectangular domain which is subdivided into a grid of equally sized elements by first dividing the 
domain into rectangles, and then subdividing each rectangle into two triangles. Applying local 
stability theory, it is known that if the triangulation algorithm generates a grid such that the 
elements can be grouped into stable eight-element patches, as is the case for the grids in Figure 8, 
then the resulting mixed approximation is guaranteed to be stable. On the other hand, if the 
triangulation strategy generates a grid of elements which cannot be grouped into stable eight- 
element patches, as is the case for the grids in Figure 9, then the stability of the mixed 
approximation is no longer guaranteed. 

Figure 6. 

Figure I .  

Figure 8. (a) grid GX1; (b) grid GX2 
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Figure 9. (a) grid G1; (b) grid G2 

The dire consequences of using this element without guaranteed stability will be demonstrated in 
the following section. 

NUMERICAL EXAMPLES 

In order to investigate the relationship between the stability of the mixed approximations and the 
accuracy and rate of convergence of solution, a number of non-trivial flow problems were solved 
using the uniformly stable element and the semi-stable element analysed above. Results for two of 
the problems studied are presented here: for further details see Reference 14. 

Example 1 

The first example is the classical lid-driven cavity problem. Exploiting the symmetry, only half 
the domain was modelled (0 < x < 0.5;O < y < 1); appropriate boundary conditions in this case are 
no flow on the fixed walls including the point (x = 0, y = l), zero tangential velocity and zero 
normal stress on the symmetry boundary, with zero normal velocity and unit tangential velocity on 
the lid. No pressure specification is formally required since the hydrostatic pressure level is 
determined naturally by the normal stress condition. 

In order to investigate the convergence properties of the elements used, two sequences of 
uniformly refined grids were generated. The first sequence of grids was generated from the initial 
grid G1, illustrated in Figure 9, by subdividing every element into four smaller elements while 
preserving the direction of the triangulation. The resulting grid G2 is also illustrated in Figure 9. 
Subsequent grids G3, G4 and G5 were generated in exactly the same way. A feature of all the grids in 
the sequence is the fact that they are all viable, for both of the elements analysed in the last section, 
in the sense that the global pressure matrices arising in the discretized systems of equations are of 
full rank, i.e. there are no ‘pure’ pressure modes. In the case of the semi-stable element, however, the 
grids are not guaranteed to give rise to stable mixed approximations, since the elements cannot be 
grouped into locally stable patches on any of the grids. The second sequence of grids was generated 
from the initial grid GX1, illustrated in Figure 8, by subdividing every rectangular two-element 
patch into a union-jack patch of eight elements. The generated grid GX2 is also illustrated in 
Figure 8. Subsequent grids GX3, GX4 and GX5 were generated in exactly the same way. The 
feature of all the grids in this second sequence is the fact that, using either of the elements analysed 
in the last section, the stability of the resulting mixed approximation is guaranteed. 

Clearly, it is impossible to calculate the exact accuracy, and hence the order of convergence, of 
the numerical solutions when the problem being modelled does not have an analytic solution. 
However, it is possible to measure the exact pressure error in a restricted sense here, since it is 
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known that on the line of symmetry the pressure solution should be identically zero. Exploiting this 
fact, the following measure of the pressure error can be defined: 

E = {~cp2ds)”2. 

By definition, numerical solutions are said to be converging with order a if the error E is 
proportional to ha, where h is a measure of element length. For a sequence of uniformly refined 
grids, the order of convergence can be estimated from the solutions on successive grids by means of 
the formula 

If the error in the solution cannot be calculated exactly, as is the case here for the velocity solution, 
then it is still possible to obtain an indication of the rate of convergence by monitoring the rate at 
which solutions approach each other with increased refinement of the grid. 

A physically important measure of the global accuracy of the velocity solution for this problem is 
the position S of the stagnation point on the line of symmetry, since it is the centre of the primary 
recirculation. The three quantities E, the symmetry-line pressure error, a, the associated order of 
convergence of the pressure solution, and S ,  the position of the stagnation point, form the basis of 
the comparison here between the two elements that were analysed in the last section. The results for 
the uniformly stable element using the first sequence of grids for a Reynolds number of three are 
presented in Table I. Slightly esoteric behaviour using coarse grids is to be expected because of the 
influence of the pressure singularity at the point (0,l). The effect of the singularity can be seen to 
diminish with increased grid refinement, as expected. The order of convergence estimates on the 
finest grids are clearly approaching the value of two which is optimal using linear approximation of 
the pressure. The tabulated values of S illustrate the rapid convergence of the velocity solution. 
Indeed, calculating the value of the quantity B given by 

(15) 
log csw - w / 2 ) 1 -  log C W ~ )  - w 4 ) 1  

log 2 B =  

using the values of S corresponding to grids G2, G3 and G4 gives a crude measure of the order of 
convergence of the velocity solutions of 3.09; by comparison, 3.00 is the optimal rate for quadratic 
approximation of the velocity. 

Almost identical results to those in Table I were obtained with the uniformly stable element 
using the second sequence of grids; again both the pressure and the velocity could be seen to be 
converging at the optimal rates on the finest grids. The results obtained with the semi-stable 
element using the first sequence of grids are very different however. They are reproduced here in 

Table I. Performance of the uniformly stable element 
using the first sequence of uniformly refined grids 

Grid E U S 

G1 0.272 0.77586 
G2 0.363 x lo-’  ‘ 2.91 076584 
G3 0.291 x lo-’ 3.64 0.76512 
G4 0718 x 10-3 2.02 0.76503 
G5 0173 x 2.05 0.76503 
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Table 11. These results vividly illustrate the disastrous consequences of not having the stability of 
the mixed approximations guaranteed. Far from converging at the optimal rate the pressure 
solution in this case can be seen to diverge, with an asymptotic rate of divergence of one on the 
finest grids. If the numerical solutions are analysed more closely it is obvious that the source of the 
errors in the pressure solutions is the singularity at the point (0,l). Essentially, the pressure 
singularity seems to excite an ‘impure’ chequerboard pressure mode which persists over the 
entire grid. As illustrated by the tabulated pressure errors on the symmetry line, the magnitude of 
this impure pressure mode doubles with each successive uniform refinement of the grid. What is 
important to appreciate here is that the poor performance of this element is only manifest when the 
flow problem is ‘difficult’; solving trivial problems using the same sequence of grids, ostensibly 
accurate pressure solutions can be obtained, since there are no ‘pure’ pressure modes. Similar 
behaviour is observed by Oden and Jacq~o t t e ,~  and by Malkus and O l ~ e n , ~  using semi-stable 
penalty finite element methods when the problem that is being solved is sufficiently ‘difficult’. 

A point of considerable importance is that whereas smoothing or filtering the pressure solution 
will effectively stop the growth of the pressure error, it does not affect the corresponding velocity 
solutions, and these are also unstable, as is evident from the values of the stagnation point position 
that are recorded in Table 11. On the three coarsest grids the values appear to be converging to a 
different value to that calculated using the uniformly stable element, but the trend is not continued 
on the finest grids. 

Using the semi-stable element such that the stability of the mixed approximation is guaranteed, 
i.e. using the second sequence of grids, gives the set of results in Table 111. In this case the results 
closely resemble those of the uniformly stable element in Table I. Again, the pressure solution 
converges with the optimal rate on the finest grids; the value of j3 corresponding to the three finest 
grids suggests that the order of convergence of the velocity solutions is 3.00, and the calculated 
values of the stagnation point position agree to five decimal places on the finest grid. 

Table 11. Performance of the semi-stable element using 
the first sequence of uniformly refined grids 

Grid E LY S 

G1 3.29 0.76902 
G2 4.33 - 0.40 0.76408 
G3 7.22 -074 0.76343 
G4 13.3 - 0.88 0.76349 
G5 25.6 -094 0.76545 

Table 111. Performance of the semi-stable element using 
the second sequence of uniformly refined grids 

Grid E LY S 

GX 1 1.43 0.748 8 5 
GX2 0.833 x lo-’  4.10 076554 
GX3 0.170 x lo-’  2.29 0.76530 
GX4 0.442 x lo-’ 1.94 0.76506 
GX5 0.113 x 1.97 0.76503 
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Example 2 

The second example is that of flow through an expansion. The geometry and boundary 
conditions that were used are illustrated in Figure 10. As in the first example, two sequences of 
uniformly refined grids were generated. The first sequence was generated from the initial grid G1 
illustrated in Figure 1 1, by subdividing every element into four, preserving the direction of the 
triangulation. The second sequence was generated from the initial grid GX1 illustrated in 
Figure 11, by subdividing into locally stable union-jack patches of eight elements. As in the first 
example, there are no ‘pure’ pressure modes using any of these grids using the boundary conditions 
of Figure 10. In the case of the semi-stable element, the stability of the mixed approximation is 
guaranteed for the second sequence of grids, but not for the first. 

As expected, the pressure solutions using the semi-stable element without guaranteed stability 
were oscillatory; again the source of the oscillations was the singularity, i.e. the re-entrant corner at 
(4,0.5). Unlike the driven cavity problem, however, the magnitude of the pressure oscillations did 
not grow in this case with increased grid refinement. To show this, the average pressures at the inlet 
Pi and outlet Po for a Reynolds number of three were calculated using 

Spd. 
p=F’ (16) 
- 

giving the results presented in Table IV. As in the driven cavity problem, the uniformly stable 
element can be seen to give consistently the most accurate pressures. In the case of the semi-stable 

u - 0  
V ‘ O  

(0,O) (8.0) 

du -0 

v = o  
Figure 10. 

v- 

Figure 1 1 .  (a) grid G1; (b) grid GXl 



852 D. J. SILVESTER AND R. W. THATCHER 

Table IV. Comparison of average pressures at inlet and outlet 

Stable element Semi-stable element 
Grid Pi P o  Grid Pi Po Grid Pi Po 

G1 3.194 0.000 G1 3.345 0.016 GX1 3.285 0.010 
G2 3.182 OQOO G2 3.265 0.020 GX2 3.218 OOOO 
G3 3.176 0.000 G3 3.229 0.018 GX3 3.193 0.000 
G4 3.174 OOOO G4 3.212 0014 GX4 3.182 0.000 
G5 3.173 OOOO G5 3.205 0.011 GX5 3.177 0.000 

Table V. Comparison of the flow across the line x = 6 

Semi-stable element - - Grid U Grid U Grid U 

G1 0.083044 G1 0.084171 GX1 0081345 
G2 0.083 320 G2 0083411 GX2 0.083230 
G3 0.08 3 3 3 3 G3 0.083320 GX3 0.083332 
G4 0.08 3 3 3 3 G4 0.083326 GX4 0-083333 
G5 0.08 3 3 3 3 G5 0.083331 GX5 0083333 

Stable element 

element, the pressure solutions are physically realistic only when the stability is guaranteed. 
A feature of both the uniformly stable and the semi-stable elements is that in neither case is mass 

conserved over the element. In general, the semi-stable element is more incompressible than the 
uniformly stable one though, there being about three times the number of constraint equations. Far 
enough away from the singularity, the deleterious effect of using unstable mixed approximations 
on the incompressibility of the resulting velocity solution is particularly noticeable, e.g. calculating 
the ‘volume’ of flow C across the line x = 6 using the formula 

gives the results in Table V. The values can all be seen to be converging to the exact value of 
0.083333, but the rate of convergence is significantly more rapid when the stability of the mixed 
approximation is guaranteed. 

Using the position of the stagnation point as a measure of the rate of convergence of the velocity 
solution was not pursued, because the location of the stagnation point in this case is much closer to 
the singularity than in the driven cavity case. Consequently, the point velocities near the stagnation 
point were a long way from being converged; even the uniformly stable element results agreed only 
to about four decimal places on the two finest grids. Investigating the accuracy of the velocity 
solutions it is obvious that, as in the driven cavity case, the uniformly stable element point velocities 
are consistently more accurate than those of the semi-stable element. Comparing the relative 
accuracy of the semi-stable element point velocities, it is evident that the velocity solutions 
corresponding to grids giving guaranteed stability are almost everywhere more accurate than the 
solutions corresponding to grids without guaranteed stability; by way of illustration, the velocities 
at the point (5,0.75) are compared in Table VI. 
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Table VI. Comparison of the velocities a t  the point (5,0.75) 

Stable element Semi-stable element 
Grid U V Grid U V Grid U V 

G1 0.04793 000377 G1 0.04272 0.00573 GXl 0.05107 0.00367 
G2 005020 0.00266 G2 004971 000436 GX2 004997 0.00333 
G3 0.05040 0.00263 G3 005002 0.00315 GX3 005012 0.00283 
G4 005044 000260 G4 005022 0.00280 GX4 005028 0.00268 
G5 0.05046 000259 G5 0.05034 000267 GX5 0.05038 000263 

POSTSCRIPT 

It is stressed that the results presented herein are indicative of a general phenomenon, namely that 
the accuracy of both velocities and pressures can be adversely affected by not having a scheme that 
is stable in a sufficiently strong sense. Other researchers have observed similar behaviour using non- 
uniformly stable quadrilateral elements. Further research is under way to analyse the stability of 
two-dimensional quadrilateral elements and, more importantly, three-dimensional brick elements, 
in more detail. 
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